BIM+背景下国内建筑行业领域应用发展趋势的探讨
摘 要:在互联网+”的概念被正式提出之后迅速发酵,各行各业纷纷尝试借助互联网思维推动行业发展,建筑施工行业也不例外。随着BIM应用逐步走向深入,本文探讨BIM+国内各个行业领域应用如BIM+云计算、BIM+物联网、BIM+GIS等等,更多的是将BIM与其他先进技术集成或与应用系统集成,以期发挥更大的综合价值。
关键词:BIM;建筑行业;云计算;GIS;发展趋势
BIM即是建筑信息模型(Building Information Modeling),是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。如今的建造业的时代,传统的建造模式并不满足建立各结构、管道或设备的定义及属性,难以符合现代复杂建筑物的信息需求,依此信息业开始广泛地发展面向对象概念以解决CAD系统的缺陷,发展出具有三维视图及对象功能的BIM,并能结合其他开发插件语言,开发出能应用于其他领域的系统,以完成更加复杂的应用。
一.BIM+云计算应用
云计算是一种基于互联网的计算方式,以这种方式共享的软硬件和信息资源可以按需提供给计算机和其他终端使用。BIM与云计算集成应用,是利用云计算的优势将BIM应用转化为BIM云服务。
基于云计算强大的计算能力,可将BIM应用中计算量大且复杂的工作转移到云端,以提升计算效率;基于云计算的大规模数据存储能力,可将 BIM模型及其相关的业务数据同步到云端,方便用户随时随地访问并与协作者共享;云计算使得BIM技术走出办公室,用户在施工现场可通过移动设备随时连接云服务,及时获取所需的BIM数据和服务等。
根据云的形态和规模,BIM与云计算集成应用将经历初级、中级和高级发展阶段。初级阶段以项目协同平台为标志,主要厂商的BIM应用通过接入项目协同平台,初步形成文档协作级别的BIM应用;中级阶段以模型信息平台为标志,合作厂商基于共同的模型信息平台开发BIM应用,并组合形成构件协作级别的BIM应用;高级阶段以开放平台为标志,用户可根据差异化需要从BIM云平台上获取所需的BIM应用,并形成自定义的BIM应用。
二.BIM+物联网集成应用
物联网是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议将物品与互联网相连进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
BIM与物联网集成应用,实质上是建筑全过程信息的集成与融合。BIM技术发挥上层信息集成、交互、展示和管理的作用,而物联网技术则承担底层信息感知、采集、传递、监控的功能。二者集成应用可以实现建筑全过程“信息流闭环”,实现虚拟信息化管理与实体环境硬件之间的有机融合。目前BIM在设计阶段应用较多,并开始向建造和运维阶段应用延伸。物联网应用目前主要集中在建造和运维阶段,二者集成应用将会产生极大的价值。
BIM与物联网的深度融合与应用,势必将智能建造提升到智慧建造的新高度,开创智慧建筑新时代,是未来建设行业信息化发展的重要方向之一。未来建筑智能化系统,将会出现以物联网为核心,以功能分类、相互通信兼容为主要特点的建筑“智慧化”大控制系统。
三.BIM+GIS集成应用
地理信息系统是用于管理地理空间分布数据的计算机信息系统,以直观的地理图形方式获取、存储、管理、计算、分析和显示与地球表面位置相关的各种数据,英文缩写为GIS。BIM与GIS集成应用,是通过数据集成、系统集成或应用集成来实现的,可在BIM应用中集成GIS,也可以在GIS应用中集成BIM,或是BIM与GIS深度集成,以发挥各自优势,拓展应用领域。目前,二者集成在城市规划、城市交通分析、城市微环境分析、市政管网管理、住宅小区规划、数字防灾、既有建筑改造等诸多领域有所应用,与各自单独应用相比,在建模质量、分析精度、决策效率、成本控制水平等方面都有明显提高。
BIM与GIS集成应用,可增强大规模公共设施的管理能力。现阶段,BIM应用主要集中在设计、施工阶段,而二者集成应用可解决大型公共建筑、市政及基础设施的BIM运维管理,将BIM应用延伸到运维阶段。
随着互联网的高速发展,基于互联网和移动通信技术的BIM与GIS集成应用,将改变二者的应用模式,向着网络服务的方向发展。当前,BIM和GIS不约而同地开始融合云计算这项新技术,分别出现了“云BIM”和“云GIS”的概念,云计算的引入将使BIM和GIS的数据存储方式发生改变,数据量级也将得到提升,其应用也会得到跨越式发展。
四.BIM+空间资产管理的应用
空间管理是为节省空间成本、有效利用空间、为最终用户提供良好的工作生活环境而对建筑空间所进行的管理。BIM不仅可以用于有效管理建筑设施及资产等资源,也可以帮助管理团队记录空间使用情况,处理最终用户要求空间变更的请求,分析现有空间的使用情况,合理分配建筑物空间,确保对空间资源的最大利用。
一套有序的资产管理系统将有效提升建筑资产或设施的管理水平,但由于建筑施工和运营的信息割裂,使得这些资产信息需要在运营初期依赖大量的人工操作来录入,而且很容易出现数据录入错误。
BIM中包含的大量建筑信息能够顺利导入资产管理系统,大大减少了系统初始化在数据准备方面的时间及人力投入。此外,由于传统的资产管理系统本身无法准确定位资产位置,通过BIM结合RFID的资产标签芯片还可以使资产在建筑物中的定位及相关参数信息一目了然。
五.BIM+数字化建造应用
制造行业目前的生产效率极高,其中部分原因是利用数字化数据模型实现了制造方法的自动化。同样,BIM结合数字化制造也能够提高建筑行业的生产效率。通过BIM模型与数字化建造系统的结合,建筑行业也可以采用类似的方法来实现建筑施工流程的自动化。
建筑中的许多构件可以异地加工,然后运到建筑施工现场,装配到建筑中(例如门窗、预制混凝土结构和钢结构等构件)。通过数字化建造,可以自动完成建筑物构件的预制,这些通过工厂精密机械技术制造出来的构件不仅降低了建造误差,并且大幅度提高构件制造的生产率,使得整个建筑建造的工期缩短并且容易掌控。
BIM模型直接应用于制造环节,可以在制造商与设计人员之间形成一种自然的反馈循环,即在建筑设计流程中提前考虑尽可能多地实现数字化建造。同样,与参与竞标的制造商共享构件模型也有助于缩短招标周期,便于制造商根据设计要求的构件用量编制更为统一的投标文件。同时,标准化构件之间的协调也有助于减少现场发生的问题,降低不断上升的建造、安装成本。
随着建筑行业标准化、工厂化、数字化水平的提升,以及建筑使用设备复杂性的提高,越来越多的建筑及设备构件通过工厂加工并运送到施工现场进行高效的组装。而这些建筑构件及设备是否能够及时运到现场、是否满足设计要求、质量是否合格将成为整个建筑施工建造过程中影响施工计划关键路径的重要环节。
近年来,BIM技术的发展越来越受重视,无论是政策配给,还是实际需求,BIM在建筑行业的“存在感”已不容忽视,但和国外的高质量生产方式还有所差距。今年,国家为推进建筑工业化、数字化、智能化升级,加快建造方式转变,推动建筑业高质量发展,住建部、工信部等13部委联合印发《关于推动智能建造与建筑工业化协同发展的指导意见》。
到2035年,我国智能建造与建筑工业化协同发展取得显著进展,企业创新能力大幅提升,产业整体优势明显增强,“中国建造”核心竞争力世界领先,建筑工业化全面实现,迈入智能建造世界强国行列。
国家13部委联合发文,明确未来5-10年发展目标,推动智能建造与建筑工业化,行业未来发展趋势已十分明朗,BIM必将引领产业转型升级革命。
参考文献
[1] 肖仰华.BIM在建筑设计中的十大典型应用[M].北京:电子工业出版社,2022:4-15.
[2] 刘宸,李华昱.BIM的五大特点和八大典型应用[J].建筑,2023,29(06):1-12.