您现在正在浏览:首页 > 职教文章 > 职教论文 > 数控机床伺服系统的故障与维修

数控机床伺服系统的故障与维修

日期: 2006-11-4 20:39:10 浏览: 207 来源: 学海网收集整理 作者: 沙洲职业工学院 李旭

[摘 要]: 数控伺服系统作为数控装置和机床的联系环节,是数控机床的重要组成部分,数控机床的精度和速度等技术指标很大程度上取决于伺服系统的性能优劣。因此,对高性能伺服系统的研究和开发一直是现代数控机床的关键技术之一。
[关键词]:伺服系统 控制 电机
[Summary]: The number controls servo system as the number controls to equip and tool machine of contact link is the importance that number controls tool machine to constitute part, the number controls very great degree of the technique index signs such as accuracy and speed etc. s of the tool machine to is decided by the function good and bad of the servo system up. Therefore, to high performance the research and development of the servo system have been one of the key techniques that the modern number controls tool machine.
[Key words]: The servo system the control the electrical machinery
[前言]: 伺服系统在数控机床设备中具有重要的地位,高性能的伺服系统可以提供灵活、方便、准确、快速的驱动。随着技术的进步和整个工业的不断发展,伺服驱动技术也取得了极大的进步,伺服系统已进入全数字化和交流化的时代。
一、 伺服系统的发展过程
(一)直流伺服技术
伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所驱动的电机类型分为直流伺服系统和交流伺服系统。50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。70年代则是直流伺服电机的应用最为广泛的时代。
(二)交流伺服技术
从70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。
(三)交直流伺服技术的比较
直流伺服驱动技术受电机本身缺陷的影响,其发展受到了限制。直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,机械换向器则成为直流伺服驱动技术发展的瓶颈。
交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,特别是交流伺服电机的过负荷特性和低惯性更体现出交流伺服系统的优越性。所以交流伺服系统在工厂自动化等各个领域得到了广泛的应用。
从伺服驱动产品当前的应用来看,直流伺服产品正逐渐减少,交流伺服产品则日渐增加,市场占有率逐步扩大。在实际应用中,精度更高、速度更快、使用更方便的交流伺服产品已经成为主流产品。
二、伺服系统的应用
随着市场竞争的日趋激烈,用户对所需产品提出了更高的技术要求和更合理的性能价格比。伺服系统以其出色的性能满足了各种产品制造厂家近乎苛刻的要求,从而能够对产品的加工过程、加工工艺和综合性能进行改造。在机电一体化设备上伺服系统的使用更加广泛,几乎工业生产的所有领域都成为伺服系统的应用对象。
三、伺服系统故障与维修
(一) 主轴驱动系统的故障与维修
1主轴转速与进给不匹配
当进行螺纹切削或用每转进给切削时,会出现停止进给,主轴仍然运转的故障。主轴有一个每转一个的脉冲的反馈信号,一般为主轴编码器有问题。
2转速偏移指令值
3主轴异常噪声及振动
电气驱动(在减速过程中发生、振动周期与转速无关)
主轴机械(恒转速自由停车、振动周期与转速有关)
4主轴电动机不转:CNC是否有速度信号输出;使能信号是否接通、CTR观察I/O状态、分析PLC梯形图以确定主轴的启动条件(润滑、冷却)主轴驱动故障:主轴电机故障。
(二) 进给伺服系统的故障与维修
1.超程
当进给运动超过由软件设定的软限位或由限位开关设定的硬限位时,就会发生超程报警,一般会在CRT上显示报警内容,根据数控系统说明书,即可排除故障,解除报警。
2.过载
当进给运动的负载过大,频繁正、反向运动以及传动链润滑状态不良时,均会引起过载报警。一般会在CRT上显示伺服电动机过载、过热或过流等报警信息。同时,在强电柜中的进给驱动单元上、指示灯或数码管会提示驱动单元过载、过电流等信息。
3.窜动
在进给时出现窜动现象:①测速信号不稳定,如测速装置故障、测速反馈信号干扰等;②速度控制信号不稳定或受到干扰;③接线端子接触不良,如螺钉松动等。当窜动发生在由正方向运动与反向运动的换向瞬间时,一般是由于进给传动链的反向间隙或伺服系统增益过大所致。
4.爬行
发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良、伺服系统增益低及外加负载过大等因素所致。尤其要注意的是:伺服电动机和滚珠丝杠联接用的联轴器,由于联接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠转动与伺服电动机的转动不同步,从而使进给运动忽快忽慢,产生爬行现象。
5.振动
机床以高速运行时,可能产生振动,这时就会出现过流报警。机床振动问题一般属于速度问题,所以就应去查找速度环;而机床速度的整个调节过程是由速度调节器来完成的,即凡是与速度有关的问题,应该去查找速度调节器,因此振动问题应查找速度调节器。主要从给定信号、反馈信号及速度调节器本身这三方面去查找故障。
6.伺服电动机不转
数控系统至进给驱动单元除了速度控制信号外,还有使能控制信号,一般为DC+24V继电器线圈电压。伺服电动机不转,常用诊断方法有:①检查数控系统是否有速度控制信号输出;②检查使能信号是否接通。通过CRT观察I/O状态,分析机床PLC梯形图(或流程图),以确定进给轴的起动条件,如润滑、冷却等是否满足;③对带电磁制动的伺服电动机,应检查电磁制动是否释放;④进给驱动单元故障;⑤伺服电动机故障。
7.位置误差
当伺服轴运动超过位置允差范围时,数控系统就会产生位置误差过大的报警,包括跟随误差、轮廓误差和定位误差等。主要原因有:①系统设定的允差范围小;②伺服系统增益设置不当;③位置检测装置有污染;④进给传动链累积误差过大;⑤主轴箱垂直运动时平衡装置(如平衡液压缸等)不稳。
8.漂移
当指令值为零时,坐标轴仍移动,从而造成位置误差。通过误差补偿和驱动单元的零速调整来消除。
9.回参考点故障
有找不到和找不准参考点两种故障。前者主要是回参考点减速开关产生的信号或零标志脉冲信号失效所导致,可以用示波器检测信号;后者是参考点开关挡块位置设置不当引起,只要重新调整即可。
(三) 数控机床坐标轴的移动定位是由位置伺服系统来完成的。位置伺服系 统一般采用闭环或半闭环控制。(半)闭环控制的特点就是任一环节发生故障都可能导致系统 定位不准确、不稳定或失效。诊断定位故障环节就成为维修的关键。根据伺服系统的控制原 理和系统接口的特性,对系统进行分解判断,已成为行之有效的方法。下面主要介绍了位置环和速度环诊断方法。
1 位置环故障诊断
如果位置伺服系统的位置反馈和速度反馈各自采用一个反馈器件 ,可以断开位置环的控制作用,让速度环单独运行,以便判断故障出自位置环还是速度环。
断开位置环的控制作用,可以采用两种方法:
1)机械断开,即断开位置反馈编码器与伺 服电动机之间的传动连接。
2)电气断开,即断开位置反馈编码器与系统的连接。
在位置开环状态下 进行维修测试时,不允许给被测试轴任何方式的移动指令,否则将引起伺服电动机失控。
如果位置反馈和速度反馈由一只反馈元件完成,位置反馈信号经 转换电路变为速度控制信号,则要根据系统硬件具体特性和故障信息作出灵活判断。
2 速度环故障诊断
在速度开环的方式下,对速度控制单元进 行测试。该方法需要对系统硬件较熟悉,以避免误操作损坏部件。
3电流环是指输出信号速度环的输出信号和经电流互感器得到的电流信号。
在三环系统中,位置环的输出是速度环的输入;速度环的输出是电流环的输入,电流环的输出直接控制功率变换单元的反馈信号。
综上所述,数控机床伺服系统诊断定位与故障环节是数控机床维修的关键,高性能的伺服系统能使数控机床更有效更灵活的生产零件。

返回顶部