您现在正在浏览:首页 > 职教文章 > 职教论文 > 混凝土桥梁裂缝成因综述

混凝土桥梁裂缝成因综述

日期: 2009-6-26 23:13:11 浏览: 9 来源: 学海网收集整理 作者: 佚名

引言:混凝土因取材广泛,价格低廉,抗压强度高,可浇筑成各种形状,并且耐火性好,不易风化,养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。混凝土最主要的缺点是抗拉能力差,容易开裂。大量的工程实践和理论分析说明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;有些裂缝在使用荷载或外界物理,化学因素的作用下,不断产生和扩展,引起混凝土炭化,保护层剥落,钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构正常使用,必须加以控制。我国现在公路,铁路,建筑,水利
   等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。本文所讨论的仅指后一类裂缝。
   近年来,我国交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。在桥梁建造和使用过程中,有关因出现裂缝而影响工程质量甚至导致桥梁跨塌的报道屡见不鲜。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。其实,如果采用一定的设计和施工措施,很多裂缝是可以克服和控制的。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土桥梁裂缝的种类和产生的原因作全面的分析,总结,以方便设计,施工找出控制裂缝的可行办法,达到防范于未然的目的。
   实际上,混凝土结构的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:
   1 荷载引起的裂缝
   混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝,次应力裂缝两种。
   1.1 直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:
   设计计算阶段,结构计算时不计算或部分漏
   算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
   施工阶段,不加限制地堆放施工机具,材料;
   不了解预制结构受力特点,随意翻身,起吊,运输,安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳度验算等。
   使用阶段,超出设计载荷的重型车辆过桥;
   受车辆,船舶的接触,撞击;发生大风,大雪,地震,爆炸等。
   1.2 次应力裂缝是指由外荷载引起的次生应力裂缝。裂缝产生的原因有:
   在设计外荷载作用下,由于结构物的实际工作
   状态同常规计算引诱出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两铰拱桥脚设计时常采用布置“X”型钢筋,同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
   桥梁结构中经常需要凿槽,开洞,设置牛腿等,
   在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处,受力钢筋截断处容易出现裂缝。
   实际工程中,次应力裂缝是产生荷载裂缝的最常见
   原因。次应力裂缝多属张拉,劈裂,剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如:现在对预应力,徐变等产生的二次应力,不少平面杆系有限元程序均正确计算,但在40年前却比较困难。在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。
   荷载裂缝特征依荷载不同而异呈现不同的特点。这
   类裂缝多出现在受拉力区,受剪区或振动严重部位,但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。根据结构不同受力方式,产生的裂缝特征如下:
   中心受拉。裂缝贯穿构件横截面,间距大体相
   等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。
   中心受压。沿构件出现平行于受力方向的短而
   密的平行裂缝。
   受弯。弯矩最大截面附近从受拉力区边沿开始
   出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。
   大偏心受压。大偏心受压和受拉区配筋较少的
   小偏心受压构件,类似于受弯构件。
   小偏心受压。小偏心受压和受拉力区配筋较多
   的大偏心受压构件,类似于中心受压构件。
   受剪。当箍筋太密时发生斜压破坏,沿梁端腹
   部出现大于450方向斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约450方向相互平行的斜裂缝。
   受扭。构件一侧腹部先出现多条450方向斜裂
   缝,并向相邻面以螺旋方向展开。
   受冲切。沿柱头板内四侧发生约450方向斜拉
   裂,行成冲切面。
   局部受压。在局部受压区出现与压力方向大致
   平行的多条短裂缝。
   1.3 荷载裂缝的控制措施
   在结构计算时选择合理模型,作业假设与实践受力相结合,尽可能全的计列各种荷载的作用,内力计算及配筋要采取至少两种假设方案进行校验,定出合理的结构断面,同时要多人验算,例行层层复检制度,确保结构断面、配筋和刚度等能满足安全使用条件。
   施工图中应注明构件上堆放材料、机具的重量,起吊位置,运输安装注意要点,结构施工顺序以及受力模式简图,以指导施工,防止因施工不当而引起裂缝。
   2 温度变化引起的裂缝
   2.1温度引起裂缝成因
   混凝土具有热胀冷缩性质,当外部环境或结构内部
   温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其他裂缝最主要特征是将随温度变化而扩张或合拢。引起温变化主要因素有:
   年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月平均温度作为变化幅度。考虑到混凝土的蠕变特性,年温度内力计算时混凝土弹性模量应考虑折减。
   日照。桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其他部位,温度剃度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。
   骤然降温。突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。
   水化热。出现在施工过程中,大体积混凝土(厚度超过2.0米)浇注后由于水泥水化热放热,导致内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入摸温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇注以加快散热。
   蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。
   预制T梁之间横搁板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可以升高至350,混凝土构件也容易开裂。试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300后抗拉强度下降50,抗压强度下降60,光圆钢筋与混凝土的粘结力下降80,由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。
   2.2温度控制及防止裂缝的措施
   为了防止裂缝,减轻温度应力可以从控制温度和
   改善约束条件两个方面着手。
   控制温度的措施如下:
   采用改善骨料级配,用于硬性混凝土,掺混和
   合料,加引气剂或塑化剂等措施以减少混凝土中的水泥量;
   拌合混凝土时加水或用水将碎石冷却以降低
   混凝土的浇筑温度;
   热天浇筑混凝土时减少浇筑厚度,利用浇筑层
   面散热;
   在混凝土中埋设水管,通入冷水降温;
   规定合理的拆膜时间,气温骤降时进行表面保
   温,以免混凝土表面发生急剧的温度梯度;
   施工中长期暴露的混凝土浇筑块表面或薄壁
   结构,在寒冷季节采取保温措施;
   2.3改善约束条件的措施
   合理地分缝分块;
   避免基础过大起伏;
   合理的安排施工工序,避免过大的高差和侧
   面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝只十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
   在混凝土的施工中,为了提高模板的周转率,往往要求新浇
   筑的混凝土尽早拆膜。当混凝土温度高于气温时应适当考虑拆膜时间,以免引起混凝土表面早期裂缝。新浇筑早期拆膜,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉力达到很大的数值,就有导致裂缝的危险但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海绵等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
   加筋对大体积混凝土的温度应力影响很小,因为大体积混凝
   土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7—15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100—200CM2..因为,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难,但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定影响。 为了保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。例如使用减水防裂剂,笔者实践中总结出其主要作用为:
   混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。这个表面张力理论早在六十年代就已被国际上所确认。
   水胶比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。
   水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件可减少15%的水泥用量,其体积用增加骨料用量来补充。
   减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉变形。
   提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。
   混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。
   掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗炭化性,减少炭化收缩。
   掺减水防裂剂后混凝土时间适当,在有效防止水迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。
   掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。
   许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。
   2.4 混凝土的早期养护
   实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。
   从温度应力观点出发,保温应达到下述要求:
   防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。
   防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。
   防止老混凝土过冷,以减少新老混凝土间的约束。混凝土的早期养护,主要目的在于保持适宜的温度条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。
   适宜的温湿条件是相互关联的。混凝土的保温措施常常也有保温的效果。
   从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。
   以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的,具体施工中要靠我们多观察、多比较,出现问题后多分析、多总结,结合多中预防处理措施,混凝土的裂缝是完全有避免的。
   3 收缩引起的裂缝
   3.1收缩引起的裂缝成因
   在实际工程中,混凝土因收缩引起的裂缝是常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自身收缩和炭化收缩。
   塑性收缩。发生在施工过程中、混凝土浇注后4-5小时左右,此时水泥水化反应激烈,分子链逐渐形成。出现泌水和水分急剧蒸发,混凝土矢水收缩,同时骨料因自重下沉,因此混凝土尚未硬化,称为缩性收缩。缩性收缩所产生原因量级很大,可达1左右。在骨料下沉过程中若受到钢筋阻拦,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减少混凝土缩性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇注。
   缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,至使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现诡裂裂纹。
   自生收缩。自生收缩是混凝土在硬化过程中,水泥和水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与分煤灰水泥混凝土)。
   炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。
   3.2 控制收缩裂缝的措施
   混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成诡裂状,形状没有任何规律。
   水泥品种、标号、及用量选用。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、模细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。
   骨料品种选用。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩率较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。
   水胶比选用。用水量越大,水胶比越高,混凝土收缩越大。
   外加剂选用。外掺剂保水性越好,则混凝土收缩越小。
   养护方法选择。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩越小。
   外界环境。大气中湿度小、空气干燥、湿度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。
   振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩要小。振捣时间应根据机械性能决定,一般以5-15/次为宜,时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。
   对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20-60)。构造上配筋优先采用小直径钢筋(8-14)小间距布置(10-15),全截面构造配筋率不宜低于0.3%,一般可采用0.%-0.5%。
   4 地基础变形引起的裂缝
   4.1地基变形引起裂缝成因
   由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:
   地质勘察精度不够、实验资料不准。在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏大,勘察报告不能充分反映实际地质情况。
   地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质和山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。
   结构荷载差异太大。在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱涵形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。
   结构基础类型差别大。同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。
   分期建造的基础。在原有桥梁基础附近新建桥梁时,如分期修建的左右桥梁,新建桥梁荷载或基础处理时引起地基土重新团结,均可能对原有桥梁基础造成较大沉降。
   地基东胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。
   桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。
   桥梁建成以后,原有地基条件变化。大多数天然地基和人工地基浸水后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加,基础受荷加大。有些桥梁基础埋置过浅,受洪水冲刷、掏挖,基础可能位移。地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、砂石等,桥址范围土层可能收缩再次变形。因此,使用期间原有地基条件变化均可能造成不均匀沉降。
   对于拱桥等产生水平推力的结构物,对地质情况掌握不够,设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。
   4.2 防止地基变形引起裂缝的措施
   在设计阶段,增加地质勘探的精度,深度和密度,使勘测报告反映真实。地层变化较大时,设计尽量采用桩基础,整体一座桥尽量采取相同的桩径和桩的受力种类,桩长在地质偏差不大时,桩长不宜偏差太大。明挖扩大基础应按受力荷载不同分块,其截面和深度应详细检算确定,保证沉降不均匀,并保证地基不冻胀。
   在施工阶段,基底土质应做试验确认和设计勘探一致,基底土不能挠动后在回填,并及时完成基础施工,不能让基底长时间外露或浸水,更不能受冻胀。
   5 钢筋锈蚀引起的裂缝
   5.1 钢筋锈蚀引起的裂缝成因
   由于混凝土质量较差或保护层不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中氯离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2—4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂,剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。
   5.2 防止钢筋锈蚀引起的裂缝措施
   要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度,采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其他存在腐蚀性强的空气,地下水地区尤其应慎重。
   6 冻胀引起的裂缝
   6.1 冻胀引起的裂缝成因
   大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀力;同时混凝土凝胶孔中的过冷水(结冰温度—78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大 ,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%—50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。
   6.2 防止冻胀引起的裂缝措施
   控制混凝土中骨料空隙多,降低吸水性;降低骨料中含泥土等杂质;选用较小混凝土水胶比,增强振捣密实度;加强养护使混凝土早期不受受冻等。冬季施工时,采用电气加热法,暖棚法,地下蓄热法,蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。
   7 施工材料质量引起的裂缝
   7.1施工材料质量引起的裂缝成因
   混凝土主要由水泥,砂,骨料,拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
   7.2防止施工材料质量引起的裂缝措施
   水泥:
   慎用早强水泥,混凝土早期强度越高,对混凝土长期性能越不利,在早期也越易开裂。
   水泥安定性不合格,水泥中游离的氧化钙量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。
   水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。
   当水泥含碱量较高时,混凝土的开列倾向加大,工程实践发现,在有的露天混凝土开列板中,尽管有活性骨料且水泥具有高含碱量,但开列裂处却没有碱-骨料反应物,混凝土也没有膨胀,说明种开裂首先是由于水泥的高含碱量所引起的收缩,为防止碱促进混凝土的开裂,水泥中的碱含量应不超过0.6%Na2O当量。
   砂、 石骨料:
   砂石的粒径太小,级配不良,空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和用量加大,而且还降低混凝土强度和抗冻性,抗渗性。砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。
   碱骨料反应。碱骨料反应有三种类型:
   碱硅酸反应。参与这种反映的骨料有流纹岩,安山岩,蛋白岩,黑硅岩,燧岩,鳞石岩,玻璃质火山岩,玉髓及微晶或变质石英等。反映发生于碱与微晶氧化硅之间,其生成硅胶体遇水膨胀,在混凝土中产生很大的内应力,可导致混凝土突然爆裂。这类反应是碱骨料反应的主要形式。
   碱硅酸盐反应。参与这种反应的骨料有粘土质岩石,千枚岩,硬砂岩,粉砂岩等。此类反应的特点是膨胀速度非常缓慢,混凝土从膨胀到开裂,能渗出的凝胶很少。
   碱碳酸岩反应。多数碳酸岩没有碱活性,有特定结构的泥质细砂白云质灰岩和泥质细砂灰质白云岩才具有与碱反应的碱活性,且还须高碱度,一定湿度环境下才能反应膨胀。
   碱骨料反应裂缝的形状及分布与钢筋限制有关,当限制力小时,常出现地图状裂缝,并且在缝中有白色或透明的浸出物;当限制力强时则出现顺筋裂缝。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量低的水泥品种。
   拌和水及外加剂
   拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱化物泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。
   8 施工工艺质量引起的裂缝
   8.1施工工艺质量引起的裂缝成因
   在混凝土结构浇筑,构件制作,起模,运输,堆放,拼装及吊装过程中,若施工工艺不合理,施工质量低劣,容易产生纵向的,横向的,斜向的,竖向的,水平的,表面的,深进的和贯穿的各种裂缝,特别是细长薄壁结构容易出现。裂缝出现的部位和走向,裂缝宽度因产生的原因而异,比较典型常见的有:
   混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。
   混凝土振捣不密实,不均匀,出现蜂窝,麻面,空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。
   混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。
   混凝土搅拌,运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。
   混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面出现不规则的收缩裂缝。
   用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。
   混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电,下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触凿毛,清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。
   混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。
   施工时拆模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。
   施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
   施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。
   装配式结构,在构件运输,堆放时,支承垫木不在一条垂直线上,或悬过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。
   安装顺序不正确。对产生的后果认识不足。导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时。钢筋混凝土墙式护栏若与主梁同时浇注。拆架后墙式护拦往往产生裂缝;拆架后在浇注护拦。则裂缝不易出现。
   施工质量控制差。任意套用混凝土配合比,水、砂、石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。
   8.2施工工艺质量引起的裂缝措施
   严格控制保护层的厚度,消除与钢筋垂直方向的裂缝,加强砼振捣,防止出现蜂窝、麻面,消除钢筋锈蚀引起的裂缝;放慢砼浇注速度,消除塑性变形;控制砼塔落度不宜过低,消除不规则收缩裂缝;控制水胶比不宜太大,消除硬化时收缩太大出现不规则裂缝;砼浇筑时施工处理要适当,要凿毛清洗,设置接茬筋,消除收缩裂缝;控制拆模时间,消除构件自重或施工荷载引起的裂缝;支架应先预压,消除支架刚度不足、弹性变形,地基沉降引起的裂缝;装配件起吊、翻身、运输、堆放,加固有可行的措施,消除因受相反而引起的裂缝。
   九、结束语
   一座桥梁从建成到使用,牵涉到设计、施工、监理、运营管理等各个方面。由上述可知,设计疏漏、施工低劣、监理不力。均可能使混凝土桥梁出现裂缝。因此,严格按照国家有关规范、技术标准进行设计、施工和监理,是保障结构安全耐用的前提和基础。在运营管理过程中,进一步加强巡查和管理,及时发现和处理问题,也是相当重要的一个环节。

返回顶部