您现在正在浏览:首页 > 职教文章 > 职教论文 > 激光加工技术在汽车车身工业中的应用

激光加工技术在汽车车身工业中的应用

日期: 2011-1-13 21:25:27 浏览: 0 来源: 学海网收集整理 作者: 常熟理工学院机械工程学院 卫熙锋

摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。三维激光加工另一大突出的优点就是大大降低了产品的生产成本。在零件成型后,所有的冲切工作全部可由激光完成,无需准备昂贵的冲切模具,这将大大提高投资回报率。另外,激光加工全部通过数控程序控制,不但可随时根据需要进行修改,而且一旦需要马上可以切换到其他产品的生产,产品改变所需的成本只是重新编程和准备工装的费用,这同更换全套模具所需的巨额投资相比,完全可以忽略不计。
   关键词:加工原理、柔性、三维激光加工、发展前景。
   Laser processing technology in the automotive industry application
   WeiXiFeng
   (Changshu institute of technology, mechanical engineering institute Suzhou changshu 215500)
   Abstract: Laser processing means using laser beams projected onto a material surface produces overheats to finish machining process, including laser welding, laser cutting, surface modification, laser marking, laser drilling and micro processing, etc. Used lasers to materials for all the processing, such as punch, cutting, welding, heat treatment, etc. Laser can adapt to any material processing manufacturing, especially in some special precision and requirements, special occasion and special material processing manufacturing plays an irreplaceable role. 3d laser processing another big outstanding qualities is greatly reduces the production cost. In parts forming, all the punching work all can finish, need not prepare by laser punching moulds expensive that will greatly increase ROI. In addition, laser processing all by NC program control, not only can at any time according to need to modify, and once need immediate can switch to other products production, product change the costs just reprogrammed and prepare tooling costs, this same replacement full mould required huge investments compared, and can completely neglected.
   Keywords: processing principle, flexibility, 3d laser processing and development prospects.
   一 激光加工的原理及其特点
   1. 激光加工的原理
   激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
   激光加工的特点
   激光具有的宝贵特性决定了激光在加工领域存在的优势:
   ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。
   ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。
   ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。
   ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。
   ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。
   ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。
   ⑦使用激光加工,生产效率高,质量可靠,经济效益好。例如:①美国通用电器公司采用板条激光器加工航空发动机上的异形槽,不到4H即可高质量完成,而原来采用电火花加工则需要9H以上。仅此一项,每台发动机的造价可省5万美元。②激光切割钢件工效可提高8-20倍,材料可节省15-30%,大幅度降低了生产成本,并且加工精度高,产品质量稳定可靠。虽然激光加工拥有许多优点,但不足之处也是很明显的。
   二 激光技术在汽车车身工业中的应用
   用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光加工有许多优点:①激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;②激光头与工件不接触,不存在加工工具磨损问题;③工件不受应力,不易污染;④可以对运动的工件或密封在玻璃壳内的材料加工;⑤激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;⑥激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;⑦在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。
   柔性是激光最大的优势 。由于板坯厚度变化、冲压模具磨损等一些不可控制的因素,车身冲压件的实际尺寸同设计尺寸之间存在着一些细微的、但却不可预测和控制的误差。而激光加工要求激光束的焦点位置精密控制在冲压件表面,因此,将激光加工引入到汽车车身加工领域的难度是很大的。1979年,在世界上第一台三维激光切割机问世时,它还只能进行汽车内饰件的切割,而无法加工金属冲压件。1982年,普瑞玛工业公司创造性地将电容式传感器集成到了三维激光切割设备中,使机床可以自动“适应”冲压件弹性变形造成的误差,从而使三维激光切割技术真正成为了汽车车身加工的一种新的精密、灵活的加工手段。 与传统的模具或手工加工不同,激光切割不但具有切缝窄(0.1~0.3mm)、加工精度高(尺寸偏差﹤0.1mm)、热影响区小的优点,而且切口光滑平整,没有毛刺和飞边,加工后的零件不会对下一道冲压工序中的模具形成任何损坏。激光加工的另一个突出的特点是:它是一种没有切削力的加工方式,在切割过程中零件本身不受力,因此三维激光切割零件的夹具设计和制造非常简单,可以大大节省夹具的成本和缩短制造周期。由于这些优点,三维激光加工一经推出就马上被汽车设计公司所采用,在样车试制和小批量试生产中发挥了巨大的作用,并逐渐地被广泛应用于模具制造和小批量的变形车及特种车生产等领域。
   传统的试制阶段,冲压件的切边和切孔等工作只能依靠手工完成,一般至少需要两到三道工序,分别完成内框、孔、内轮廓和外轮廓的切割。而内框、内轮廓的切割对于手工操作来讲是极其困难的,在切割过程中出现废品的机率较高,而且手工加工无法保证切割件的重复精度,根本无法满足市场上对产品质量越来越苛刻的要求。此外,每个零件必须手工划线,加工时间长,加工后的产品必须逐件进行检验,很难符合车型开发周期越来越短的客观要求。但对于激光加工来说,所有这些问题都不存在:所有的切割(包括孔、槽、内外轮廓等)均可通过数控程序在三维激光切割机上一次完成;无论是加工一件还是一百件,其尺寸均完全相同;加工过程全部自动完成,彻底避免了可能出现的各种人为误操作所导致的废品。最重要的是,激光切割大大提高了零件的生产效率,从开始编程、准备夹具到切割出合格的产品,激光加工只需数小时就可以完成原来人工需要数周甚至数月的工作量。在 “时间就是金钱”、“时间就是市场”的今天,开发周期的长短直接影响着产品能否成功占领市场和生产厂商的成败,因此,在试制阶段采用激光切割技术已经越来越成为各主机厂、设计公司和模具公司的唯一选择。
   同传统冲压加工相比的成本优势 。由于三维激光切割技术在车身试制领域中展现的突出优点,从20世纪90年代初开始,人们开始逐渐考虑将三维激光切割作为切割模具的替代品,直接用于中小批量、变形车、特种车和备件的生产之中。
   同传统的模具冲压相比,激光切割最大的劣势是单件加工周期相对比较长。以轿车车门内侧板为例,从拉延成型到完成全部冲切工序,采用模具冲压大约需要6min左右(半自动冲压线),而如果采用激光加工则需要10min左右。但作为柔性加工方式的一种典型代表,激光加工所需的准备时间非常短,通过先进的CAD/CAM软件,从数模转换、加工程序生成到工装夹具准备完成,全部过程只需一天的时间,而准备好同样的全部冲切模具则至少需要两到三个月。三维激光加工另一大突出的优点就是大大降低了产品的生产成本。在零件成型后,所有的冲切工作全部可由激光完成,无需准备昂贵的冲切模具,这将大大提高投资回报率。另外,激光加工全部通过数控程序控制,不但可随时根据需要进行修改,而且一旦需要马上可以切换到其他产品的生产,产品改变所需的成本只是重新编程和准备工装的费用,这同更换全套模具所需的巨额投资相比,完全可以忽略不计。
   假设某一个轿车需要10个车身覆盖件,如果采用常规的冲切模具进行生产,所需模具的成本大约在200~400万美元之间,全部的工装准备、设计调试的人天工作量需要25个月,而如果采用三维激光切割设备,全部切割准备的总成本仅为5万美元,而所需的时间也仅为50天。由此可见,即使三维激光切割机的采购成本高达100万美元,生产一个车型所需模具的投资也仅相当于三台大型三维激光切割机床的价格,而且这里还不包括购买压力机所需的费用。因此,对于中小批量规模生产的车型,完全可以考虑用两到三台激光切割机并行工作,替代全部冲切模具的工作,在保证相同生产效率的同时,不但可以为用户节省巨额的模具开发制作成本,而且还可以大大缩短新车上市的时间。这种并行模式所带来的另一个好处是即使一台设备出现了故障,也不会导致整个生产线停机,而只是损失1/3的生产率,大大降低了生产管理风险。最重要的是,一次性购买的激光切割机可以反复用于各种零件的加工,帮助厂家避免了车型改变所带来的投资风险。
   三 三维激光加工设备
   先进三维激光加工设备的共同点
   21世纪的激光加工设备还应该具有一些新的特点,以符合技术不断进步的要求。首先,先进的三维激光切割机应采用全飞行光路技术,即加工过程中工件和夹具保持静止不动,全部的运动由加工头完成,加工过程不受工件重量、尺寸、占地面积及夹具等方面的限制。因为激光加工本身就是一种没有切削力的加工方式,采用飞行光路技术后,工装夹具只起支撑和定位的作用,而无需考虑工件移动带来的定位和固定等问题,可以大大节省用户工装夹具设计的成本和时间。同时,由于工件静止不动,机床的运动部分几乎没有负载,这大大降低了机床自身的磨损,可以保证设备长期稳定可靠的运行。另外,由于采用了飞行光路技术,机床的占地面积大大减少,并可灵活配置各种自动上下料系统以充分利用设备的效率。
   三维激光加工设备另一个关键技术就是其加工头的设计。好的五轴加工头不但应该结构紧凑、设计简洁、具有非常好的接近性,同时它还可以实现连续n×360°(无限制旋转)和120°的摆动,即使是非常复杂的零件表面(如内高压成型件),也可以非常好地接近加工并减少五轴编程的工作量。
   当然,成熟的三维激光设备还应通过欧洲CE和美国CDRH安全标准认证,配置有完善的安全防护系统,在加工过程中将加工区域完全封闭,不但可保证操作人员的安全,还可大大提高加工区域内废气抽风除尘系统的工作效率。目前先进的三维激光切割机的各数控轴已全部采用光栅尺全闭环反馈控制,其定位精度和重复定位精度比市场上采用编码器半闭环控制的传统设备提高了一个数量级。
   四 激光加工在汽车制造业的发展前景
   进入21世纪后,在日本、美国及欧洲的汽车工业中,人们越来越关注保持自己在市场中的竞争力尤其是研发能力。小批量生产、订制生产已经成为一种发展方向。这种生产方式融合了手工制造及大批量生产两者的优势,同时避免了手工生产的成本过高以及大批量生产缺乏灵活性的缺点。
   在这种条件下就要求激光加工设备的制造商必须不断地对自己的产品进行技术革新并保持自己产品的竞争力,在设计中不仅要注意满足目前汽车覆盖件加工应用中的需要,而且要为用户今后的发展做好准备,即为小批量生产模式预先提供合理的解决方案。针对最近几年中汽车车身工业用户对设备在以下三个方面的性能改进表现出强烈的需求——更快的加工速度、更大的加工范围(特别是目前非常成功的MPV、SUV、皮卡对这方面需求更加强烈)以及具有灵活性、结构紧凑、操作简明等特点,普瑞玛工业公司专门对其旗舰型三维激光加工机床OPTIMO做了全新的设计。新改进的OTPIMO机床的行程为2500mm×4500mm×920mm,是目前市场上加工范围最大的标准三维激光切割机床之一。它采用龙门框架式结构,全部运动部分均架在空中,整个加工区域全部面向用户开放,具有非常好的可接近性,用户可根据自身产品的情况选择从手工到全自动的多种配置方案。在动态性能方面,OPTIMO也达到了前所未有的水平:其最大定位速度为84m/min,最大加速度为0.5g,同老式激光加工机相比,其加工效率提高了至少一倍。同时,OPTIMO采用集成式结构设计,不但安装简便迅速,还具备可以快速安装及可以在不同的生产部门之间快速重新定位的功能,就像最新型的车床和磨床一样
   激光加工用于再制造业和应用于其他制造业一样,有其不可替代的优点,并优于其它加工技术。激光加工用于再制造业是由相变硬化发展到激光表面合金化和激光熔覆,由激光合金涂层发展到复合涂层及陶瓷涂层,从而使得激光表面加工技术成为再制造的一项重要手段。它主要是采用5KW~10KWCO2高功率激光器及其系统。 与国际上激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的4%左右。主要表现为:高档激光加工系统很少,甚至没有;主力激光器不过关;微细激光加工装备缺口较大;而这些领域我国的生产 加工企业正在积蓄力量稳步进入,国内应用市场有很大发展空间。预测今后2-3年内,我国激光加工销售额将会由2008年的35亿人民币上升翻一倍,也就是说会达到70亿元产值。 国内各类制造业接受了激光加工技术,它可使他们的产品增加技术含量,加快产品更新换代,为适应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。目前正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特征的激光,尤其是能适应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。
   参考文献:
   【1】•张辽远,现代加工技术。北京:机械工业出版社,2008.7
   【2】•宋威廉,激光加工技术的发展。北京:机械工业出版社,2008.3
   【3】•孟永刚,激光加工技术。北京:国防工业出版社,2008.01

返回顶部