您现在正在浏览:首页 > 职教文章 > 职教论文 > 发动机五种新技术

发动机五种新技术

日期: 2009-8-27 1:10:36 浏览: 10 来源: 学海网收集整理 作者: 佚名

1.TSI技术
   TSI是大众集团开发的一套双增压技术,其实从字面上就能理解其意思。前面的T和S分别代表Turbo和Supercharger的意思,也就是涡轮增压和机械增压的相结合。而国内媒体习惯叫它双增压。这个双增压跟大众奥迪集团的双涡轮增压有很大的区别,可以说是完全两个概念。那么为什么要同时采用机械增压和涡轮增压来向发动机提供高压进气呢?既然大众已经将这套技术向量产车推广,那么在性能上肯定有它的过人之处。
   要了解双增压的优越性首先得了解涡轮增压和机械增压的优缺点。其实任何一种增压它的目的都是相同的,就是要把空气压缩以后再通入到气缸当中燃烧,这样做的好处很明显,压缩以后的空气密度更大,这就意味着单位体积内的氧气分子更多。在发动机排量不变的情况下,吸入的氧气分子越多,再配合燃油喷射系统提供的更多的汽油那么可以输出更高的动力。不管是涡轮增压还是机械增压都是为了达到这一目的而设计的,只不过两者的实现手段不相同。涡轮增压发动机由一个进气涡轮来压缩空气,进气涡轮的另一头连着一个废气涡轮。
   发动机的排气是高温高压的,这就意味着排气中仍然含有巨大的能量。将废气涡轮装在排气管之中则能利用排气能量来驱动涡轮高速旋转,从而能够带动进气涡轮随之高速旋转,以获得压缩进气的能量。所以涡轮增压器是不需要额外的消耗发动机能量的。而且发动机转速越高废气排放速度和能量也越大,使得涡轮的转速也越高,这样进气涡轮压缩空气的能力也越强。
   对于涡轮增压的发动机来说,转速越高,进气效率也越高,能够发挥出来的功率就越大。所以涡轮增压器对于发动机的高速运转是非常有好处的。涡轮也是有质量的,有质量的物体就会存在惯性。我们知道发动机在怠速工况时转速往往只有几百转,而且在怠速工况时涡轮是不能介入工作的。除了因为发动机转速低,排气能量不足以驱动涡轮高速运转,还有一个更重要的原因就是怠速时发动机负荷低,如果此时涡轮也参与工作那么发动机会过热,并且耗费更多不必要消耗的汽油。所以怠速工况时,进气和排气旁通阀会自动打开,此时进气和排气都没有经过涡轮,新鲜空气是直接被吸入气缸,废气也是直接排入大气中的。
   由于增压发动机的压缩比都比较低(通常在8.0以下,压缩比低是因为空气被增压器压缩后会放热,如果压缩比过高会导致压缩行程时混合气继续放热,引起混合气自然),所以在涡轮介入之前发动机的动力性是非常差的。即便是低值增压,起码也要到将近1800转时涡轮才会起到作用(帕萨特1.8T的涡轮介入转速为1800转/分-2000转/分)。虽然2000转以后发动机能发挥出强大的功率,而且后劲十足,但起步时可以说毫无动力性可言,即使保时捷卡宴TURBO这样的V8涡轮增压发动机,起步同样拼不过自然吸气。这就是涡轮增压发动机的通病涡轮迟滞。这种状况是非常不适合城市驾驶的。因为我们知道城市开车经常要走走停停,所以从怠速到2000转这个转速范围段是使用得很频繁的,涡轮增压低扭差劲的缺点暴露无疑。当然,大众奥迪集团曾经试图改进过涡轮迟滞问题。
   机械增压器的原理与发动机机油泵有些类似,也是与发动机动力相连,只不过压缩的是空气。它与涡轮增压器在性能上最大的区别就是对压气机的转速没有限制。也就是说只要罗兹压气机在转,就可以压缩空气。而涡轮增压器由于是靠高速旋转产生的空气离心力来压缩空气,所以需要非常高的转速(通常TURBO的转速能接近10万转/分钟)。所以即便发动机怠速或者处于1000转左右的低转速,也能连接机械增压器压缩进气。
   不过处于经济型考虑,怠速工况时电磁离合器是断开的,也就是说怠速时压缩比并没有与发动机动力相连,不过只要踩下油门电磁离合器可以迅速连接发动机动力。所以机械增压能够给汽车带来很好的低转扭矩,让起步时冲进十足。虽然克服了涡轮增压器迟滞的缺陷,单机械增压也并非完美。由于它需要消耗发动力动力,而且增压器中的两个转子相互摩擦会损耗大量的能量。在低转速时,由于转速低损耗也就小,但如果处于高转速工况,那么这样能量损耗是非常大的。不仅经济性差,高转动力性也要受到影响。
   涡轮增压和机械增压都有着各自的先天缺陷,而这两种增压方式的优缺点又是相互互补的。大众就是利用了这两种增压性能优缺点的互补性开发出了TSI双增压系统。那么现在再看TSI就很好理解了。他是涡轮增压与机械增压的相结合。也就是说,TSI发动机拥有两套增压系统,一套靠涡轮压缩进气,另一套靠罗兹压气机压缩进气。当然,它们什么时候起作用是由电脑说了算的。电脑即能够控制进排气旁通阀的开闭,也能控制机械增压器与发动机相连接的电磁离合器的开闭。
   当发动机在部分负荷工况下低转速运转时(通过节气阀传感器检测到又少许油门开度,而且通过发动机转速传感器检测到转速处于低速运转),电脑会接通机械增压器的电磁离分离,并且关闭机械增压旁通阀,让机械增压器开始工作,此时的增压值为1.2bar.我们知道机械增压器有增强低速扭矩的特点,而且在低转速时对发动机功率的消耗并不大。所以既能够获得良好的油门相应,又能够增大发动机扭矩输出。当发动机超过1500转时,涡轮开始介入,此时的增压值提高到2.5bar。当发动机转速达到3500转/’分以上的高转速时,机械增压器开始停止增压,此时完全依靠涡轮增压来进行增压,增压值从2.5bar降到1.3bar。因为我们知道一旦转速上升,机械增压器会消耗大量发动机能量,而中高转速是涡轮增压的强项,这样不仅避免了涡轮迟滞,让涡轮有足够的加速时间,还在很大程度上增加了低转扭矩,降低高转速时机械增压器产生的噪音。这样彻底解决了两种增压方式的缺陷,达到了一种完美增压的效果。
   2.TDI技术
   由于全球石油资源短缺和燃油价格上涨,柴油轿车的比例在逐年递增,轿车柴油化已成为一种世界趋势。在我国,一汽-大众公司继率先推出捷达SDI Suction Direct Injection)自然吸气直接喷射柴油轿车后,又于2004年2月推出了宝来TDI(Turbo Direct Injection)涡轮增压直接喷射柴油轿车。
   柴油发动机与汽油发动机相比,具有压缩比高,热效率和经济性好,在相同功率的情况下,柴油机的扭矩大,最大功率时的转速低等优点。柴油发动机在诸多方面优于汽油发动机,且由于柴油发动机的转速相对较低,发动机部件的磨损相对减少,加之柴油车没有高压点火系统和节流阀体,所以发动机的故障率低,使用寿命长;但无论是汽油机还是柴油机定期保养都是保证车辆性能的前提,由于两者的保养方面存在一定的差异,下面就针对宝来TDI柴油轿车的使用与养护特别指出几点: 凝点。柴油失去流动性而开始凝固的温度称为凝点。凝点过高,低温时容易造成油路的堵塞。在我国柴油的标号是按凝点来编定的,凝点的高低是选用柴油的主要依据。因此在不同的地区和不同的季节应选用合适的柴油。下表是不同柴油标号所对应的适用地区温度。
   柴油的品质是柴油发动机“健康”运转的保证,含有水分或杂质的劣质柴油会对高压分配泵造成严重损害。所以对用户而言,一定要增强自我保护意识,最好的办法是慎重选择加油站,以及加油后索要票据。用户加注燃油时,如果误加汽油应立即熄火,并迅速和一汽-大众公司当地服务站取得联系,否则会造成高压泵损坏。
   由于宝来TDI使用了可以更加精确控制喷油始点和喷油量的电控泵喷射系统(UIS),可以优化燃烧过程,降低燃烧噪音,采用了可以更有效地提高整车动力性,更有效地增大发动机功率和扭矩的可调叶片式涡轮增压技术,所以无须再使用任何添加剂。
   宝来TDI装有预热塞指示灯即发动机管理系统报警灯。该指示灯提示用户预热塞正在加热,当发动机处于冷态时,打开点火开关,该灯亮起,指示灯熄灭时即可起动发动机。若发动机处于暖态时,则该灯不亮,可直接起动发动机。同时,该灯还具有报警功能,在行驶过程中,该指示灯闪亮,则表明发动机管理系统发生故障,须尽快与一汽-大众公司特约服务站联系检修发动机。
   特别提醒宝来TDI用户,当发动机长时间高速运转后,切勿立即关机,应以怠速继续运转2min左右,待温度降低后再关机,避免热量积聚。
   宝来TDI的定期保养都要严格的使用原厂的三滤备件。因为劣质的三滤备件对于柴油轿车的危害非常大,下表提醒用户一定要注意按时更换三滤和机油。
   3.电子气门技术
   “电子气门”(VALVETRONIC)是宝马公司最新研制的技术,作为内燃机领域里的一次革命性的创新而倍受赞誉。“电子气门”技术可以在保证汽车性能不受影响的前提下大大降低油耗,并且可以大大减少二氧化碳排放量。日本汽车研究者及新闻工作者学会将“RJC 2003年度科技奖”颁给了宝马的“VALVETRONIC”。宝马杰出技术的当选是因其创新的汽车工程学、卓越的动力性能和燃料高效能。 VALVETRONIC处于21世纪初汽车技术领域的最前沿。Valvetronic少了节流阀(throttle)的设计,如同我们鼻子或肺在作呼吸动作时一样地跟空气直接接触,而省略掉throttle后,引擎在进新鲜空气时,将更顺畅,少掉因为空气流动的一些 黏著力与磨擦力,而使引擎在运转时省去不必的的loss!一般的车子,当我们用脚踏加油门时,是驱动著钢索而通到throttle这开关的,而踏油门的深浅正控制著throttle的开或关的程度,而引进的就是将进入引擎燃烧室燃烧的新鲜空气,所以,throttle正控制著燃烧室的空气量与流动速率;然而,取代这"机械式"的进气节流阀(throttle)机置后,取代的是"电子式"的可变电阻,依我们踏油门的深浅,经过这可变电阻而来决定"进气量。
   4.可变气门正时与升程技术
   VTEC系统全称是可变气门正时和升程电子控制系统,是本田的专有技术,它能随发动机转速、负荷、水温等运行参数的变化,而适当地调整配气正时和气门升程,使发动机在高、低速下均能达到最高效率。+在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴内顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式
   对于一台4冲程发动机,按照很多人的理解,做功冲程末,活塞处于下止点时排气门开始打开,发动机进入排气冲程,直到活塞到达上止点,排气门关闭,进气门打开,发动机进入吸气冲程。当活塞正好运行一周重新回到下止点时,进气门关闭,发动机进入压缩冲程。然而,可能和与人们的直觉不同的是,这样的气门正时效率并不是最优的。让我们先来考虑一下排气门开启的时机。如果比活塞到达下止点提前一点就开启排气门会怎么样呢?从直觉上,这时废气仍可推动活塞做功,如果打开排气门开始排气,此时气缸内的压强就会降低,能量的利用率也就降低了,发动机性能也会随之下降。是这样吗?其实也不一定。我们知道,排气时活塞会压迫废气从而反过来对废气做功,这个过程会消耗一部分发动机已经获得的能量。如果在缸内压强相对较高时提前开始排气,排气过程就会更顺畅,从而在排气冲程减少了能量消耗。这样,一得一失,怎么才会最合算呢?考虑到活塞在下止点附近一定角度内垂直运动距离其实非常短,实际的发动机略微提前打开排气门效果会更好一些。再来看进气门关闭的时机。如果在活塞越过下止点一定角度,开始压缩冲程之后再关闭进气门,直观的感觉可能是,这时活塞已经开始上升,刚刚吸入的可燃混合汽岂不是又要被排出去一部分?性能会不会下降?只要时机适当,这样做反而可以增加吸气量,改善性能。因为在吸气冲程可燃混合汽被活塞抽入汽缸,进气门附近的气流速度可以高达每秒两百多米,而我们前面说过,在下止点附近活塞的垂直运动相对很慢,汽缸内体积变化并不大。此时进气岐管内的可燃混合汽靠惯性继续冲入气缸的趋势还是占了上风。说到这里,对一些VVT技术有所了解的兄弟可能要不耐烦了:讲了这么多,和VVT边还没沾呢!如果排气门也在活塞越过上止点一定角度之后再关闭,虽然活塞已经
   开始下降,排气门附近的废气仍就会继续排出。但是此时进气门不是已经开启了吗?废气难道不会涌入进气岐管?事实上,这又是个时机问题,燃烧室内的废气涡流的方向决定了废气短时间内是不会流向排气门对侧的进气门的,于是,一边进气一边排气的局面是完全可以实现的。事情还可以更理想。由于大部分废气在排气冲程中前期就已排出,并且在排气岐管中形成了高密度的高速气流,冲向排气管方向。这部分废气越是远离气缸,对于缸内尚未排出的废气来说,其需要填充的体积就越大,相应的平均压强也就越低。低到什么程度?低到活塞尚未到达上止点之前,缸内压强可能就已经低于进气岐管内可燃混合汽的压强了。如此看来,进气门也应当提前一点开启才好。
   气体密度波动。前述现象可以用这种波动更科学地解释,气流对汽缸吸气和排气的影响则都与波长和进气岐管、排气岐管的长度的关系有关。所以才会有可变进气岐管、可变排气岐管等技术嘛!不过,这里我们主要不是要讨论这些技术,所以请允许我化繁为简。
   前边讲到了进气门和排气门同时打开的情况,也就是进气门和排气门的重叠。重叠持续的相对时程可以用此间活塞运行的角度来衡量,这样就可以抛开转速,把它作为系统的固有特性来看待了。重叠的角度通常都很小,可是对发动机性能的影响却相当大。那么这个角度多大为宜呢?发动机转速越高,每个汽缸一个周期内留给吸气和排气的绝对时间也越短,但是前
   面讲到的进气岐管或排气岐管内的气流也越快。想想看,这时发动机需要尽可能长的吸气和排气时间,而且也有有利条件可以利用,还犹豫什么?只要重叠的角度大一些不就行了?当然,也不能太大,前边说了,这里有个时机问题,重叠角度太大肯定也不好,要不干脆让进气门和排气门同时开闭得了:)很显然,这个时机是与转速有关的,转速越高,要求的重叠角度越大。也就是说,如果配气机构的设计是对高转速工况优化的,发动机就容易得到较高的最大转速,也就容易获得较大的峰值功率。
   但在低转速工况下,这样的系统重叠角度肯定就偏大了,废气就会过多的泻入进气岐管,吸气量反而会下降,气缸内气流也会紊乱,ECU也会难以对空燃比进行精确的控制,最终的效果是怠速不稳,低速扭矩偏低。相反,如果配气机构只对低转速工况优化,发动机的峰值功率就会下降。所以传统的发动机都是一个折衷方案,不可能在两种截然不同的工况下都达到最优状态。发动机的油耗转速特性曲线是马鞍形的,转速太高,超过了一定的范围,可燃混合汽的燃烧就会越发的不充分,发动机的经济性和排放特性都会恶化,尤其如今发达国家的环保法规日益严格,问题就变得更加严重。于是,很多厂商就采用复杂的废气再循环(EGR)装置来改善发动机的高转速经济性和排放。顾名思义,EGR装置的作用就是吸入部分废气,使其中的尚未燃烧的可燃物质有机会继续燃烧,部分有害中间产物得以分解。不难想到,如果此时将进气门和排气门的重叠角度调得高一点,略微超过原来所说的对动力性来讲最合适的角度一些,就会有部分废气和新鲜的可燃混合汽混合,提高了发动机的空燃比,使燃烧更充分,排放更清洁。大家可能发现了,这简直就是不需要额外装置的EGR技术嘛!然而很不幸,这种偏大的重叠角度设置,同样使发动机难以提供令人满意的低转速性能。
   改变气门正时可以有很多不同的方法,但最主要的无外乎两大类,一类是改变凸轮轴的相位, 再一类就是直接改变凸轮的表面形状。想想看就知道,改变凸轮的表面形状哪可能容易呢?回到Valvetronic,它依然保留了Double VANOS可变进、排气凸轮轴相位的气门正时调节系统,那么它又是如何实现对气门升程进行连续调节的呢?BMW为此增加了一种额外的偏心轴,凸轮轴则又通过一个额外的摇臂系统驱动传统的气门摇臂,并且该附加摇臂与气门摇臂的接触的角度取决于附加偏心轴的相位。附加偏心轴的相位可以由一个ECU控制下的调节装置来调整,从而使附加摇臂的角度发生变化,这样,对于相同的凸轮运动,传递到气门摇臂上的反应就可以不同,气门的升程也就会相应发生变化。
   从BMW的资料看,Valvetronic系统对气门开放时程的影响应当不大,调节的只是气门升程。不过,气门开度很小的时候,气体的进出效率是很低的,如果考察气门开度超过一定程度的持续角度,姑且称之为有效的气体交换时程,通常也是随气门升程的增加而增加的。为了限制发动机的复杂度,目前实际应用的Valvetronic系统在气门升程方面,调整的只是进气门。尽管理论上类似系统也可以作用于排气门,但那样的话整个配气机构就过于复杂了。就目前Valvetronic的发展情况来说,由于参与气门运动的机件还是太多,高转速下机械能损耗就大,不利于提高发动机的最大转速。
   5. GDI和HCCI发动机燃烧技术
   因汽油和柴油两种燃料的理化特性不同,内燃机可以分成汽油机和柴油机两类。20世纪70年代以来,随着欧美等发达国家排放法规和油耗法规的实施,内燃机燃烧与排放控制技术取得了飞速发展,使内燃机燃油消耗率和有害排放有了大幅度的降低,但传统的火花点燃式汽油机和压燃式柴油机由于燃烧工:作方式的局限性,难以进一步提高燃料利用率或降低有害排放。
   受汽油的辛烷值和爆震燃烧等因素的限制,汽油机只能采用较低的压缩比,造成发动机的热效率较低;汽油机缸内燃烧属均质预混合燃烧,燃烧的温度高,火焰传遍整个燃烧室的时间长,因而燃烧过程产生了较多的NO。和不完全燃烧产物CO和HC。另外,由于汽油机需要用节气门控制进气量来调节发动机的功率,部分负荷时的泵气损失增加使发动机的有效热效率进一步降低。柴油机的缸内燃烧属燃料在高温下的自燃,燃烧过程可分为预混燃烧和扩散燃烧。柴油在上止点前喷人汽缸,自燃着火需经过一段滞燃期,在滞燃期内形成的那部分混合气首先迅速燃烧(预混燃烧),使柴油机缸内温度压力提高。随后,在高温和高压的环境下,喷雾形成的油束便扩散混合,并由扩散速度决定燃烧速度的方式燃尽剩余燃料(扩散燃烧)。尽管柴油机燃烧的平均空燃比在2.3以上,燃烧室内气体平均温度也较低,在1200~2000K之间,但由于燃料与空气的混合严重不均,而燃烧的局部可以认为仍然是以化学计量比为l的燃烧过程,火焰温度可高达2700K。燃烧过程中存在着已燃高温区、高温火焰区和未燃高温过浓区,已燃高温区有利于NO2生成,而在高温燃料过浓区,又由于缺氧而大量生成碳烟,柴油机的非均质燃烧特性使排放降低变得非常困难。
   有鉴于此,研究者一直期望能将汽油机均质燃烧和柴油机燃烧的高压缩比燃烧的优势结合在一起,相互取长补短。随着电子控制技术的进步和在内燃机中应用的发展,人们的这一愿望终于变成现实,这就是近年来迅速发展起来的汽油缸内直喷(gasoline direct injection)发动机和均质充量压燃(homogenous charge compression ignition)发动机。
   汽油机的功率是通过改变节气门开度调整发动机的进气量来实现的,届变量调节。在发动机中低负荷时,为了减小发动机的功率,节气门开度减小以减少进气量,进气节流使发动机的泵气损失增加,发动机的燃油经济性变差。此外,受汽油的辛烷值的限制,汽油机的压缩比较小,使得循环的理论热效率降低。以上两方面的因素就是汽油机燃油消耗较柴油机高的原因。碳氢浓度高,随着燃烧的进行,缸内压力升高导致大量的未燃的燃料进入活塞顶岸等狭缝容积,这部分HC在膨胀行程溢出,部分被氧化,其余以未燃HC和CO的形式排出机外。因此,在过量空气系数y=1附近工作的汽油机的机内生成与排出的CO、HC和NO都较高。

返回顶部