您现在正在浏览:首页 > 职教文章 > 职教论文 > 变频器电路控制分析

变频器电路控制分析

日期: 2010-1-17 7:45:38 浏览: 7 来源: 学海网收集整理 作者: 佚名

摘要:本论文主要分7个步骤来写的,介绍了变频器的基本结构,原理,抗干扰措施及控制电路广泛的应用,从电气特性和用参数、故障等方面对变频器的应用作了介绍。
   关键词:变频器;控制电路;干扰;故障显示
   1、引言
   随着变频器在工业生产中日益广泛的应用,了解变频器的结构,主要器件的电气特性和一些常用参数的作用及其常见故障对于实际工作越来越重要。
   1.变频器的原理以及基本知识
   1、什么是变频器?
   按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
   2、PWM和PAM的不同点是什么?
   PWM是英文PulseWidthModulation(脉冲宽度调制)缩写,按一定规律改变(脉冲)列的脉冲宽度,以调节输出量和波形的一种调值方式。
   PAM是英文PulseAmplitudeModulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
   3、电压型与电流型有什么不同?
   变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是(电容);电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
   4、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?
   频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
   5、V/f模式是什么意思?
   频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择
   6、按比例地改V和f时,电机的转矩如何变化?
   频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在慢速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿是加强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法
   7、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?
   在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz.
   8、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?
   通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择。
   9、如果用带有PG的电机,进行反馈后速度精度能提高吗?
   具有PG反馈功能的变频器,精度有提高。但速度精度的值取决于PG本身的精度和变频器输出频率的分辨率。
   10、失速防止功能是什么意思?
   如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就是失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。
   11、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义?
   加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。
   12、什么是再生制动?
   电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就是再生(电气)制动。
   13、是否能得到更大的制动力?
   从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件(控制元件),可以达到50%~100%。
   14、请说明变频器的保护功能?
   保护功能可分为以下两类:
   (1)检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。
   (2)检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。
   15、为什么(离合器)连续负载时,变频器的保护功能就动作?
   用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。
   16、在同一工厂内大型电机共同动,运转中变频器就停止,这是为什么?
   电机起动时将流过和容量相对应的起动电流,电机定子侧的(电压)产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压的判断,因而有时保护功能(IPE)动作,造成停止运转。
   17、什么是变频分辨率?有什么意义?
   对(数字控制)的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。
   变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0Hz,因此电机的动作也是有级的跟随。这样对于续取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。
   18、装设变频器时安装方向是否有限制。
   变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。
   19、不采用软起动,将电机直接投入到某固定频率的变频器时是否可以?
   在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动。
   20、电机超过60Hz运转时应注意什么问题?
   超过60Hz运转时应注意以下事项
   (1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。
   (2)电机进入一定功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。
   (3)产生轴承的寿命问题,要充分加以考虑。
   (4)对于中容量以上的电机特别是2级电机,在60Hz以上运转时要与厂家仔细
   2.变频器工作原理
   主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
   (1)整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
   (2)平波回路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
   (3)逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型逆变器为例示出开关时间和电压波形。
   控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
   (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
   (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
   (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。
   (4)速度检测电路:以装在异步电动机轴机上的速度检测器的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
   (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
   3、变频器控制电路
   给异步电动机供电(电压、频率可调)的主电路提供控制信号的网络,称为控制回路,控制电路由频率,电压的运算电路,主电路的电压,电流检测电路,电动机的速度检测电路,将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路等组成。检测电路为开环控;在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行更精确的闭环控制。
   (1)运算电路将外部的速度,转矩等指令同检测电路的电流,电压信号进行比较运算,决定逆变器的输出电压、频率。
   (2)电压、电流检测电路为与主回路电位隔离检测电压,电流等。
   (3)驱动电路为驱动主电路器件的电路,它与控制电路隔离,控制主电路器件的导通与关断。
   (4)I/O电路使变频更好地人机交互,其具有多信号(比如运行多段速度运行等)的输入,还有各种内部参数(比如电流,频率,保护动作驱动等)的输入。
   (5)速度检测电路将装在异步电动机轴上的速度检测器(TG、PLG等)的信号设为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
   (6)保护电路检测主电路的电压、电流等。当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压,电流值。
   逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能如下:
   (1)逆变器保护
   ①瞬时过电流保护,用于逆变电流负载侧短路等,流过逆变电器回件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流,变流器的输出电流达到异常值,也得同样停止逆变器运转。
   ②过载保护,逆变器输出电流超过额定值,且持续流通超过规定时间,为防止逆变器器件、电线等损坏,要停止运转,恰当的保护需要反时限特性,采用热继电器或电子热保护,过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。
   ③再生过电压保护,应用逆变器使电动机快速减速时,由于再生功率使直流电路电压升高,有时超过容许值,可以采取停止逆变器运转或停止快速的方法,防止过电压。
   ④瞬时停电保护,对于瞬时断电,控制电路工作正常。但瞬时停电如果达数10ms以上时,通常不仅控制电路误动作,主电路也不供电,所以检测出后使逆变器停止运转。
   ⑤接地过电流保护,逆变器负载接地时,为了保护逆变器,要有接地过电流保护功能。但为了保证人身安全,需要装设漏电保护断路器。
   ⑥冷却风机异常,有冷却风机的装置,当风机异常时装置内温度将上升,因此采用风机热继电器或器件散热片温度传感器,检测出异常后停止逆变电器工作。
   (2)异步电动机的保护
   ①过载保护,过载检测装置与逆变器保护共用,但考虑低速运转的过热时,在异步电动机内埋入温度检出器,或者利用装在逆变器内的电子热的保护来检出过热。动作过频时,应考虑减轻电动机负荷,增加电动机及逆变器的容量等。
   ②超速保护,逆变器的输出频率或者异步电动机的速度超过规定值时,停止逆变器运转。
   (3)其他保护
   ①防止失速过电流,加速时,如果异步电动机跟踪迟缓,则过电流保护电路动作,运转就不能继续进行(失速)。所以,在负载电流减小之前要进行控制,抑制频率上升或使频率下降。对于恒速运转中的过电流,有时也进行同样的控制。
   ②防止失速再生过电压,减速时产生的再生能量使主电路直流电压上升,为防止再生过电压电路保护动作,在直流电压下降之前要进行控制,抑制频率下降,防止不能运转(失速)。
   4、变频器控制回路的抗干扰措施
   由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量,弱信号回路,极易遭受其他装置产生的干扰,造成变频器自身和周边设备无法正常工作。因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
   (1)变频器的基本控制回路
   一般而言,同外部进行信号交流的基本回路有模拟与数字两种:
   ①4~20MA电流信号回路(模拟);1~5V/0~5V电压信号回路(模拟)。
   ②开关信号回路,变频器的开停指令,正反转指令等(数字)。
   外部控制,指令信号通过上述基本回路导入变频器,同时干扰源也在其回路上产生干扰电势,以控制电缆为媒介侵入变频器。
   (2)干扰的基本类型及抗干扰措施
   ①静电耦合干扰,指控制电缆与周围电气回路的静电容耦合在电缆中产生的电势。当加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就会不太明显,也可在两电缆间设置屏敝导体,再将屏蔽导体接地。
   ②静电感应干扰,是说电气回路产生的磁通变化在电缆中感应出的电势。其强度取决于干扰源电缆产生的磁通大小、控制电缆形成的闭环面积和干扰源电缆与控制电缆间的相对角度。可将控制电缆与主回路电缆或其他动力电缆分离铺设。分离困难时,将控制电缆穿过铁管铺设,也可将控制导体绞合,绞合间距越小,铺设的路线越短,抗干扰效果越好。
   ③电波干扰,指控制电缆成为天线,由外来电波在电缆中产生电势。抗干扰措施同①②,必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用的铁箱务必接地。
   ④接触不良干扰,指变频器控制电缆的电接点及继电器触点接触不良,电阻发生变化在电缆中产生的干扰,对此,采用并联触点或提高电器件等级来解决。对于电缆连接点应定期做拧紧加固处理。
   ⑤接地干扰,指机体接地或信号接地,对于弱电压,电流回路,任何不合理的接地均可诱发各种意想不到的干扰,比如设置两个以上接地点,接地处会产生电位差,产生干扰。可将速度给定的控制电缆取一点接地,接地线不作为信号的通路使用,电缆的接地在变频器侧进行,使用专设的接地端子,不能与其他接地端子共用。
   (3)其他注意事项
   ①装有变频器的控制柜,应尽量远离大容量变压器和电动机。其控制电缆线路也应避开这些漏磁通大的设备。
   ②弱电压电流控制电缆不要接近易产生电弧的电器件。
   ③控制电缆建议采用屏蔽绞合绝缘电缆。
   ④屏蔽电缆的屏蔽要连接到电缆导体同样长。电缆在端子箱中连接时,屏蔽端子要互相连接。
   5、变频器的常见故障分析
   (1)变频器充电起动电路故障,通用变频器一般为用压型变频器,采用交—直—交工作方式。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个起动电阻来限制充电电流,常见的两种变频起动电路如图2所示。充电完成后,控制电路通过继电器的触点将电阻短路。起动电路故障一般表现为起动电阻烧坏,变频器报警显示为直流线线电压故障。一般,变频器的设计时,为了减小变频器的体积而选择较小起动电阻,其值多为10—50Ω,功率为10—50W;当变频器的交流输入电源频繁接通,或者(旁路触器)接触点接触不良时,都会导致起动电阻烧坏。因此在替换电阻的同时,必须找出原因,如果故障是由输入侧电源频率开始引起的,必须消除这种现象才能将变频器投入使用,如果故障只由旁路触元件引起,则必须更换这些器件。
   (2)变频器无故障显示,却不能高速运行,经检查变频器参数设置正确,调速输入信号正常,经上电运行测试,变频器直流母线电压只有450V左右(正常应在580V-600V),再测输入侧,发现缺了1相。故障原因是输入侧的一个空气开关1相接触不良造成的。造成变频器输入缺相不报警,仍能在低频段工作,是因为多数变频器的母线电压下限为400V,只有当电压降至400V以下时,变频器才报告故障。而`当两相输入时,直流母线电压为380V×1.2=452V>400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值,新型的变频器都采用PWM控制技术,调压调频的工作在逆变桥完成,所以在低频段输入缺相时仍可以正常工作,但因输入电压,输出电压低,造成异步电动机转速低频率上不去。
   (3)变频器显示过流,出现这种显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果没有这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象。如果是,很可能是IPM模块出现故障,因为IPM模块内含有过压过流,欠压,过载、过热,缺相、短路等保护功能,而这些故障信号都是经模块控制引脚的输出Fn引脚传送到控制器的。微控制器接收到故障信息后,一方面封锁脉冲输出,另一方面将故障信息显示在面板上。应更换IPM模块。
   (4)变频器显示过压故障,变频器出现过压故障,一般是雷雨天气,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,这种情形,通常只需断开变频器电源1分钟左右再通电,另一种情况是变频器驱动大惯性负载,而出现过电压现象。这种情况下,一是将减速时间参数加长或增大制动电阻(制动单元);二是将变频器的停止方式设置为自由停车方式。
   (5)电机发热,变频器显示过载,对于已经投入运行的变频器,必须检查负载状况,对于新安装的变频器出现这种故障,很可能是V/F曲线设置不当或电机参数设置有问题,此时必须正确设置好各种参数,另外,电机在低频的工作时散热性能变差,也会出现这种情况,这时就需加装散热装置。
   6、结束语
   采用变频器作为异步电动机驱动器,尽管其可靠性很高,但是如果使用不当或偶然事件,也会造成变频器的损坏,要想在生产过程中,使用好变频器,熟悉变频器的结构原理,了解常见故障,对于技术人员尤为重要。
   7、总结
   花了我好长的时间,一篇论文终于做好了,现在看着做完毕业设计心理有种说不出的兴奋与激动。回想三年来在湖南电子科技职业学院里所经历的种种,真是感慨万千。马上就要工作,走上社会了,总感觉学校里的一切都好舍不得,这里有太多美好的回忆,这里教会我很多的东西。我要感谢我的室友们,从遥远的家来到这个陌生的城市里,是你们和我共同维系着彼此之间兄弟般的感情,维系着寝室那份家的融洽。三年了,仿佛就在昨天。只是今后大家就难得再聚在一起吃每年元旦那顿饭了,没关系,各奔前程,大家珍重。我们在一起的日子,我会记一辈子的。感谢我的爸爸妈妈,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。

返回顶部