资料简介
多铁异质结的磁介电和磁电耦合效应,博士学位论文,共165页。
摘要
随着人们对器件小型化、多功能化的需求越来越高,传统电子器件尺寸己经接近了量子极限,因而尺寸的进一步降低变得越来越困难。在保证器件尺寸不变的情况下,一种有效的解决办法就是采用多功能材料提供新颖的物理现象和功能,从而使得计算机能力和存储密度增加等。而同时具有铁电极化和磁极化、并且它们之间具有耦合作用的多铁材料的出现,使得电控磁或者磁控电成为可能,并且其在多功能存储器件、磁传感器件等领域具有很大的潜在应用前景,有望解决传统电子器件的瓶颈。天然的室温单相的多铁材料的匮乏、而且其磁电耦合效应比较小,而人工复合的多铁材料在材料的选取上和磁电耦合效应上都具有单相多铁材料所不可比拟的优势,因而引起了人们的广泛关注,特别是具有铁磁/铁电(FM/FE)结构的多铁异质结。尽管人们在多铁异质结中开展了广泛的研究工作并取得一些进展,然而仍然存在着一些问题亟待解决,比如如何在高温、低磁场下实现大的磁介电效应,磁场对铁电性的影响如何,以及如何在多铁隧道结中实现交换偏置与四阻态的共存等等。
针对上述问题,本论文主要研究了多铁异质结的磁介电效应和磁场对铁电性的影响,并探讨了多铁异质结中影响磁介电效应和磁电耦合内在的因素,为实现室温大的磁电耦合效应提供了途径;初步探索了在多铁隧道结中同时实现四阻态和交换偏置效应的可能性。论文内容共分为五章,每一章的主要内容分别概括如下:
第一章主要综述了多铁异质结中的磁介电效应、磁电耦合效应以及多铁隧道结等方面的最新研究进展;并着重的介绍了多铁异质结和隧道结中的界面效应产生的机理及性能的调控。
第二章中,我们研究了 BiFe03/La5/8Ca3/8Mn03 (BFO/LCMO)多铁异质结的磁介电效应。在BFO/LCMO异质结中实现了由LCMO的磁阻以及Maxwell-Wagner效应共同导致的高达1100%的巨磁介电效应。通过对BFO/LCMO多铁异质结在不同温度、频率以及磁场下的介电频谱的研究发现:磁介电效应随着磁场的增加而增加,并在LCMO的铁磁转变温度厂=220 K、H=10 T、 500 kHz处达到最大值1100 %;而且在 500 kHz,介电的损耗随着磁场的增加而降低。通过对其介电驰豫分析,发现在rc以下,弛豫时间t随着温度的降低而降低;而在7;以上,T随着温度的增加而降低,符合热激活的Arrhenius公式,在零磁场下热激活能大约为93 meV,且激活能随着磁场的增加而降低。
第三章我们研究了磁场对BFO/LCMO异质结铁电行为的影响。实验发现磁场对BFO/LCMO异质结的表观矫顽力瓦有很大的调控作用,这是由于LCMO的相分离的变化改变了 LCMO和BFO/LCMO界面的导电能力,从而影响铁电矫顽力。通过系统的研究Au/BFO/LCMO复合薄膜在不同温度和磁场下铁电性质的变化,我们发现在零磁场下BFO/LCMO的Ec随着温度的增加先减小再增加,并在在220 K达到峰值。而随着外磁场的增加,这个峰明显减弱并逐渐向高温方向移动。而剩余极化强度P,随着温度的升高而增加,且在外磁场下变化不明显。通过对不同磁场下BFO/LCMO系统以及单层LCMO和BFO的阻抗的模分析发现:这种明显的变化主要来源于LCMO单层和BFO/LCMO界面处分压的变化。在磁场下LCMO的金属相和绝缘相的体积分数会发生变化,因而LCMO和界面的导电能力也会发生变化,进而改变界面处的电压降,从而影响BFO/LCMO的表观矫顽力Ec。由于BFO与衬底的晶格失配随着温度的降低而减小,面内压应变减少,c轴缩短,因而恳随着温度的降低而减少。
第四章我们用10 nm厚的反铁磁一铁电材料BiFe03作为势垒层构建了Lao.6Sra4Mn03/BiFe03/Lao.6Sra4Mn03 (LSMO/BFO/LSMO)多铁隧道结,由于 BFO 铁电极化对隧穿磁阻效应的调控和BFO/LSMO界面的磁交换作用,我们实现了四阻态和交换偏置效应的共存。通过对隧道结的铁电性、隧穿电致电阻结电阻的电输运测量,我们在LSMO/BFO/LSMO多铁隧道结中发现了四阻态行为以及界面磁电耦合作用即BFO铁电极化对磁致隧穿电阻的调控作用。而且在隧道结中通过这种电测量获得交换偏置场与未刻蚀的样品通过磁测量的交换偏置场的大小以及其随温度的变化趋势都一致。此外,采用脉冲激光沉积技术制备了高质量的LSM0/BF0/LSM0//SrTi03铁电隧道结,发现其在5 K下具有大约8X 104 %的TER效应,且高低组态之间的转换具有很好的稳定性。
第五章中,我们研究了 ;c[0.92Pb(Mg1/3Nb2/3)03-0.04Pb(Z_Nb2/3)Or0.04PbTi03]-(l-x)Nio.2Cua2Zno.6Fe204 (PMZNT-NiCuZn)复合材料的磁电耦合系数随温度、频率以及组分的变化关系。在准静态频率下(1 _,样品的磁电耦合系数处随着磁场的增加先增加到一最大值00?^后,然后随着磁场的继续增加而减小;随着温度的降低,峰值向高磁场方向移动,而且a—也随着温度的降低而增加。而a—随着组分x并不是单调的变化,而是对于所有温度几乎都是在;c=0.6有一最小值。随着频率的增加,磁电耦合系数都是随着频率的增加而增加。
关键词:多铁异质结 多铁隧道结 磁介电效应 磁电耦合效应 交换偏置效应
第一章多铁性异质结的研究进展
1.1引言
随着现代科技的飞速发展,人们对器件的小型化、集成化、多功能化等需求越来越高,这就对材料科学与信息技术提出了越来越高的要求,而现有的材料与器件正在逐渐接近其功能与功率的极限,制约了当代科技的发展,因此寻求面向未来的新一代材料与信息技术迫在眉睫。如今被广泛应用于信息存储领域的器件主要是基于铁磁材料和铁电材料。铁磁材料(Ferromagnetic, FM)是指材料具有自发磁极化,且其磁矩的方向可随外磁场而翻转,从而可以实现器件的开关以及非易失的信息存储。特别是巨磁阻效应(Giant Magnetoresistance effect, GMR)、磁險穿电阻效应(Tunneling Magnetoresistance effect, TMR)等的发现,使得基于铁磁材料的应用已经发展成为一门专门的学科一自旋电子学(Spintronics),并且朝着磁随机存储器(Magnetic Random Access Memory, MRAM)及其实用化快速发展[1]。
而铁电材料(Ferroelectric, FE)是指材料具有自发的电极化,且其极化方向可随外电场而翻转,基于铁电材料的铁电随机读取存储器(Ferroelectric Random AccessMemory, FeRAM)具有非易失性和读取速度快等优点,因此也被广泛的应用[2]。然而磁随机存储器和铁电存储器都面临着重大的挑战,首先每个存储单元最多只有两个存储态,而且磁记录读取速度快而写入慢,铁电记录读取复杂而写入快。如果能在一个存储单元即实现铁磁的功能,又能实现铁电功能,那么就可以解决上述的问题,并且有望打破自旋电子学的瓶颈:实现电操作的自旋状态的写入和读取。而多铁材料的发现使得人们找到了曙光。
.......